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Effect of nonadiabaticity of dust charge variation on dust acoustic waves:
Generation of dust acoustic shock waves
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The effect of nonadiabaticity of dust charge variation arising due to small nonzero valaggcfhas been
studied whererg, and 4 are the dust charging and dust hydrodynamical time scales on the nonlinear propa-
gation of dust acoustic waves. Analytical investigation shows that the propagation of a small amplitude wave
is governed by a Korteweg—de VriélsdV) Burger equation. Notwithstanding the soliton decay, the “soliton
mass” is conserved, but the dissipative term leads to the development of a noise tail. Nonadiabaticity generated
dissipative effect causes the generation of a dust acoustic shock wave having oscillatory behavior on the
downstream side. Numerical investigations reveal that the propagation of a large amplitude dust acoustic shock
wave with dust density enhancement may occur only for Mach numbers lying between a minimum and a
maximum value whose dependence on the dusty plasma parameters is presented.
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[. INTRODUCTION scribed by the KdV Burger equation and thus justifies the
assumption made for the agreement of theoretical results
Experimental and theoretical investigations on low andwith experimental finding$11].

very low frequency collective oscillations in a plasma con- Due to their very large inertia, the dust grains do not
taining micrometer sized charged dust grains—so-callegharticipate in the motion in the case of dust ion acoustic
“dust ion acoustic” and “dust acoustic” waves have cur- waves which have higher frequency compared to that of dust
rently gathered momentuil—9] because of possible appli- acoustic waves. As a result, the dust grain density is scarcely
cations in space physics, astrophysics and also in many labaffected in dust ion acoustic shock wavili—16. Dust
ratory situations. Recently, dust ion acoustizglA) shock grains respond only to the very low frequency dust acoustic
waves have been observed in the laboratory in unmagnetizé®A) waves. The variation of dust density resulting from
dusty plasmd10,11]. The experimental findings are com- propagation of compressional dust acoustic shock waves is,
pared with theoretical results assuming that shock wavéowever, of significant importance in an astrophysical con-
propagation is described by KdV Burger equation. The jusiext. Condensation of dust density resulting from propaga-
tification of the choice of the KdV Burger equation as ation of dust acoustic shock wave through dust molecular
viable technique for description of dispersive shock waveglouds and the consequent enhanced gravitational interaction
was considered much earligt2]. A dispersive shock wave IS considered as a viable process for star formaltion18§.
is generated in a plasma when wave breaking due to thé S|m|lar.conclu3|on is also suggested_by the fact tha_t the
nonlinearity is balanced by the combined action of disper{Créase in dust density and the assoma_ted decrease in du,st
sion and dissipation. In absence of dissipation balancing b?harge has the consequence that the critical length for Jean’s

dispersive effect leads to the generation of solitons describe(ﬁ'Stabi“ty is lowered[19,20. Here we have addressed the

by KdV equation. On the other hand, when dissipation domi_problem of propagation of compressional dust acoustic shock

nates, the shock front exhibits monotonic transition ofvaves resulting from nonadiabatic dust charge variation. To

| densit hile the shock t ition is of ilat this end some introductory comments on the role of dust
plasma density, while the Shock transition IS ot oscilia Orycharge variation and its different possible approximations on
nature when the dissipation is weak. Dissipation is ofte

4 by vi itv and is taken int nt by the Bur ntrhe dynamics of dust acoustic waves are in order.
caused by VISCOSIty and IS 1ake 0 account by the BUrger: ;o chargeQq on the dust grain is an extra dynamical

term in the Kd.V Burger equatiofi 3] _Lar_1dat_J damp'ﬂg and variable, which controls the grain motion but itself is to be

partlcle.reflecuon may also cause dissipation leading to t.h etermined from the grain charging equation

generation of the so-called collisionless shock waves with

oscillatory shock structure. One of the purposes of this paper

is to show that when viscosity or Landau damping effects are

not important in a dusty plasma, the nonadiabaticity of the - =a

dust charge variation provides an alternate physical mecha- dt

nism causing dissipation and as a consequence this gives rise

to shocks for which both monotonic and oscillatory struc-

tures are possible. It is also seen that such shocks are deherel. andl; are the plasma electron and ion current flow-
ing to the dust surface. Defining hydrodynamic time scale by
Td=w;d1 where w4 is the dust plasma frequency and the

*Present address: Department of Applied Mathematics, Universitgrain charging time scale by.,= Vd_l wherevy is the grain
of Calcutta, Calcutta 700 009, India. charging frequency, Eq1l) can be expressed as

OIQd=|e+|i=|, (1)
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dQq 74\ | small but finite amplitude dust acoustic wave is seen to be
Tt (T—)V— 2 governed by the KdV Burger equation. The presence of the
d( ) o 7d Burger term prevents any disturbance from developing into
d solitons and instead leads to the formation of a shocklike
structure on the downstream side exhibiting either monotonic
or oscillatory behavior. The generated dust acoustic shock is
a compressional one providing sufficient dust density en-
pancement which is a prerequisite for star formation through
ubsequent gravitational contraction. The dust wave electro-
Static potential becomes negative, and the negatively charged
dust grain is raised to higher energy state as the wave passes
through it.
Another effect of the Burger term is that the amplitude
d velocity of an initial soliton structure decay algebraically
with time. The soliton “mass”[ 2 ¢dx (¢ is the wave am-
lo+1;=0. (3)  Plitude), however, remains conserved leading to the genera-
tion of the so-called “noise tail” as the initial structure de-
Since the electron and ion currents flowing to the dust graircays [29]. On the other hand, in the opposite extreme
surface depend both on the local electrostatic potentighpproximation, i.e., for a small nonzero valuegf/ w4 the
¢(x,t) and the grain charg®, [see Eqs(11)—(14)], Eqg.(2) dust acoustic wave equation is governed by the KdV equa-
describing “adiabatic variation” of the dust charge, givestion with a linear damping term. The soliton “mass” is not
the latter as a function ofp(x,t). The local equilibrium conserved, it decays exponentially and no shocklike structure
value of Q4 obtained by the assumption of adiabatic varia-develops.
tion of dust charge provides an approximate description of The paper is organized in the following manner. Section
the charge state of a dust grain in a truly dusty plasma. ThH contains the basic equations. The KdV Burger equation
actual grain charge is, however, a dynamical variable to beescribing the propagation is derived in Sec. Ill. In Sec. IV
determined self-consistently from the charging equatibn we present the results obtained from the KdV Burger de-
coupled to the fluid equations and Poisson’s equation. Thacription of the small but finite amplitude dust acoustic
local equilibrium value or the adiabatic state dust chargevaves. Propagation of large amplitude wave is considered in
given by Eq.(2) is an approximation to the actual dust Sec. V. It is found that nonadiabaticity of the dust charge
charge forw,q/vq~0. variation (nonzerorg,/ vy= wpq/v4) leads to the generation
Nonlinear propagation of dust acoustic waves have beenf the dust acoustic shock wave when the Mach number lies
investigated by many authors in both extreme casebetween a dusty plasma parameter dependent minimum and
vyl wpg=0 [21-23 under different conditions and also for maximum value. This has been shown by numerical integra-
wpa/vg~0 [24-27. Among them Rao and Shulfag] first ~ tion of the equations of motion of the dust fluid and the
incorporated the dust charge variations in the nonlineaPoisson’s equation is coupled to the dust charge variation.
theory. In these analyses, it was shown that nonlinear dustinally, a summary of the results is presented in Sec. VI.
acoustic waves form solitons described by the KdV equation.
Propagation of large amplitude solitary dust acoustic waves Il. BASIC EQUATIONS
has also been studied by the pseudopotential method. The
results in the two extreme cases differ only in respect of the The space and time coordinatest), the grain number
magnitude of amplitude and velocity of the solitary waves. density, velocity chargeni,vq,Qg), and the electric poten-
The scenario changes drastically as we have shown in thigl ¢(x,t) are nondimensionalized by the substitutions
paper when nonadiabaticity of the dust charge variation is
taken into account by inclusion of the effect of dust charge X— x Tew ot  N= Ng. Ve Vd
variation on hydrodynamic time scale through replacement Ap’ pd Ngo ' Cq’
of Eq. (2) by (le+1i)/vg=(wpq/v)[dQqg/d(t/7g)]. In this
paper, we study the nonlinear propagation of dust acoustic Qq ed
waves for smallw,g/v4 both analytically for small ampli- Q=40 P=7. 4)
tude waves and numerically for large amplitude waves. The d €
effect of nonzercmpd/Vq has recently bee_,-n consider&_ﬁ] _ 5
but the result was obtained using only a linear approximation _ [Zd€ Ndo N
of dust charging equation. We have, however, systematically @pd eomy ’ D
retained nonlinear contributions from E(.) to appropriate
higher orders. Employing the reductive perturbation tech- (5)
nique with the scalingopd/vdZO(\/E) wheree is the usual T 2T
: T ; ; e [Zd1 ey Z4Ndo
expansion parameter, it is seen that nonadiabatic dust charge o= —, ¢4= =
variation following from Eq.(1) plays a dissipative role Ti Mgy
within consequence of which the nonlinear propagation of

For 74/ 7eh=v4/ wpq=0, one may pudQy/dt~0 yielding
Qg=const=Qy. In this approximation the plasma is effec-
tively a three component plasma—one positiiox) compo-
nent and two negative ones, viz., the electrons and the m
crometer sized heavy dust grains raised to a consta
negative charg®go by impinging plasma currents.

Under the opposite extreme approximation, i.e., fgr
> 7en (wpg/vg~0) the dust charge variation on the hydro-
dynamic time scale may be neglected and the dust chargingn
equation(1) reduces to
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The charge on the dust grains surface-igse at x=—o

where the plasma is assumed to be in the undisturbed unconnections between the plasma parameters which govern

form state¢p=0,ng=nNgg,N;=Njg,Ng=Nyg SO that

Nio=Neo+ ZgNgo- (6)
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Equationg6)—(17) represent all the basic equations and inter

the propagation of dust acoustic waves.

IIl. NONLINEAR WAVE PROPAGATION EQUATIONS

On the slow time scale, the electrons and ions are in local A kdv Burger equation (nonadiabatic charge variation)

thermodynamic equilibrium, their densities are

D
Ne=nNg €XP(P); N;=n;g exp( sl B

()

It is assumed thab 4/ vy is small but finite

—=ve, (18)

Vg

In terms of the nondimensionalized variables the dust fluid

equations are

N 9(NV)

a0 ®)

A% N N Qb g

TV ag X ©
Poisson’s equation takes the form
(92(1) -dlo (O}

X2 [Nige™ ™7 —Nep€™ +23gNgoQN] (10
and the grain charging equation is

o 0Q | Q) 1 (It
ﬁT +V (9X N Vy Zde ’ (11)

wheree is small andv is of order of unity and apply reduc-
tive perturbation method with stretching

£=\e(X—AT); 7=€¥2T. (19

The dust dynamical variablds,V,Q=Q4/z4e and the po-
tential ® are expanded as

N=1+eND+ NP +-..,
V=eVW+ V@ ...
(20
Q=—-1+ EQ(1)+ €2Q(2)_|_... ,

P=edD+ 2P i...

Substituting the expressions f@ and ® from Eq. (20) in
Egs.(12) and(13) and using the ordering equatidh8) the

wherel, andl; the plasma electron and ion currents flowing dust grain charging equatidfl) takes the following form in

to the dust grain surface are given [80-32.

) 8Te
l=—ma’e Tr—meneo exp®+zQ), (12

(14

The grain charging frequend3]

A1t 1)

20, (1+o0+2). (15

Vg=

\/_ Vthl

Qu="248

The ion electron density ratio is obtained in terms of the
plasma parameters by equating to zero the total culrent
+1; atx=—o0 where the plasma is in undisturbed state with

¢=0 and dust charge

Q4= Qo= —2z4€ (16)
giving
_Nig Jo
0= Ny (0+2) (17

terms of the stretched variables:

(1)
€’v\ 9E =e(ByPP+ QW)+ €2 By
+ 1 283 D24 Q2

2(c+2)(1+0+2) '

(21
where
(c+2)(1+0)
4 zo(1+z+o) (22

Expressions for dust grain char@® andQ(® of the order
of € and €2 now follow:

QW=—pBd™, (23)
1 235 ) ap

(2)— _ (2)_ — (L _
Q=B i pirorn ® VBN
(24)

The standard procedures applied to the dynamical equations

(8),(9) and Poisson’s equatioil0) yield the following rela-
tions between the dependent variables of the order arid
of €
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v
(6 B —
N N 0, (25
o
v+ — =0, (26)
(Xd)\
CI)(l)-i-ad(N(l)—Q(l)):O, (27)
IND &(N(l)V(l)) IN@ oy
—+ =
or o0& A 9¢ o€’ (28)
&V(1)+V(1) &V(l)+ 1 1 ﬂ(D(l)_)\&V(Z)_’_ 1 9d®
gt 7€ T g oE M oE Tag g
(29
0 1
2P By \d% 2
= (2) _ (H)°_ (2)
_r[?g ay N + 5 b adQ
2(—+1
o
+(1+ agBy) P2, (30)

\ for dust acoustic waves follow from Eq&3) and (25—

(27)

1
N=—— (3D

\ 1+ adﬁd,

where ag=(5—1)/[(5lo)+1] by Egs.(4), (5) and B4 is
given by Eq.(22).

Next on eliminating the second order quantiti®$?),
N®@), and®? from Eq.(30) with the help of Eqs(24), (28),

and(29), we obtain the KdV Burger equation describing the

propagation of nonlinear dust acoustic waves &yy/vq

=0(\e)

I A S o
gr S B Th g (32
where
S
3 2 —-1
A 3 N Zayfy T
“am agh\? (0’+Z)(1+0'+Z)_ 1) '
—+1
g
(33
SR S ) a4
B_ 2 y M=V 2 . ( )
B. Damped KdV equation
If it is assumed thavy/w,q is small but finite, i.e.,
14
—d:V€3/2 (35
wpd
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then the situation is opposite to that discussed in Sec. Il A.
The scaling(35) applied to the grain charging equati¢hl)
leads to

(2)
Q(l):() 9Q =
L [?g

while the set of relation§25)—(27) remain unchanged. Con-
sequent to the vanishing 6i*) the (normalized phase ve-
locity turns out to unity. After some algebra one finds that
the propagation is in this case governed by the KdV equation
with a damping term

1
1+—| oW (36)
(o

g adt 1500 "
or 0 T2 @ TPl (37)
where
3 (5-1) 1\ ay
= 2—%—5— , ’y—(l-i-;)?. (38)
2 ;'ﬁ‘l

IV. CONSERVATION OF MASS AND SHOCK
STRUCTURE

A. Soliton decay: Noise self

It is easily seen from the KdV Burger equati¢dR) that
the soliton mass remains conserved

J
E‘f dMdg=0. (39

On the other hand,
d f 1d>(1)2d _ f od 2d 40
=3 §=—n E & (40

The method of Karpman and Maslov yields the approximate
solution

OV (¢, ) =A(7)sech %(g)[f— % fOTA(y)dy},
(41
where
Ao

The dissipation causes the soliton amplitude to decay alge-
braically and transfer to so-called “noise tai[29]

(43

4,LL AO
( AAgapt
458

and thus allow for the conservation of soliton mass.
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FIG. 1. Oscillatory shock structure for weak dissipatiende-
fined by Eq.(18).

B. Shock structure: Energization of dust particles

The Burger term in Eq(32) implies the possibility of

existence of the shocklike structure. On transforming to the

wave frame
Cy(N+eV)t—X
VR S L "
Ap
the KdV Burger equatioti32) reduces to
d?o v a 2 pudd@®
=—pWy D" 45
ar BT YEY TE 4 49

Equation(45) has two fixed points®")=0,ddM)/d»=0)
and @M= —2V/a,d®®/d7=0). The first onabM=0 is
a saddle point while the second one, vie{!=—2V/a is a
stable focus or a stable node according as

2 2\2
wiy(1—N\%)
|\/|>OI’<1+pd(—,
Vd

(46)

whereM is defined by the ratio of the nonlinear wave veloc-
ity to the linear dust acoustic wave velocityh

\Y
M=1+e—.

- (47)

The relation(46) is defined by using Eq$18) and (47).
®M)( ) is obtained by numerical integration of E@h5)
subject to the boundary condition®®)—0 at 7— — .
Thus for any value ok the potential builds up from near
zero value at long past— —oo(7p— —) to a steady value

AT

e
ea

dM=—-2(M-1)

(48)

as t—o shows shock-wave-like structure as illustrated in
Figs. 1 and 2 with oscillating transition corresponding to

stable focus at the second fixed point. Since the potential is

PHYSICAL REVIEW E 63 046406
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FIG. 2. Monotonic shock structure for strong dissipatiorde-
fined by Eq.(18).

A ZdTe

E=—zeh=2(M—1) (49)

o

For hydrozen ion dusty plasnt& (M —1)z4e T, is plotted in
Fig. 3 againstd=n;q/ngg for fixed o=T,;/T. The ratio in-
creases withs until it reaches a maximum and then goes
down. However, it is to be noted according to Efj7) that
with o fixed, § increases with decrease Zrwhich for given

zq andT, is achieved only by increases in the grain radius

V. LARGE AMPLITUDE DUST ACOUSTIC SHOCK

Assume that the dust fluid has a nonzero flow velocity far
upstream. The upstream boundary conditions on the normal-
ized variables are

N=1, V=Vg4,, &=0, Q=-1. (50
Nonzero dust drift velocity/y, causes modificatiof30] of
the expressior(11) for the plasma ion current to the dust
grain surface by term®(Vy,/Vihi) whereVy,; is the ion

0.5

0.4

03}

e

E/M-1)z clT

||||||||||’|||||||
5 10152025 303540 45 50 55 60 65 70 75 80 8590

3

negative, the negatively charged dust is energized by the FIG. 3. E=energy[as given by Eq(49)] to which dust grains

passing wave to

are raised by passing shock waves.
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thermal velocity. We neglect such contributions assuming T
V4r<<Vihi . Transforming to the frame of the wave with wave

velocity A
{=X-\T (51

and using boundary conditior{§0), Eq. (8) is at once inte-
grated to yield

N(V—=\)=u, (52
where
U:Vdr_)\. (53)

With V given by Eq.(52) the charging equatiofill) in the
wave frame(51) becomes

U)pd u dAQ_ 1 (|e+||)
= 59
Set
Q=—-1+AQ (55
and substitute fot,, I;, andv4. Equation(54) now takes
the form
f(d,AQ)+ wv—‘:’)g(qa,AQ,dj—Q>=o, (56)
where
- rsled =5
f(P,AQ)=expP+zAQ)— 1—mAQ ex — 5/
(57)
dAQ)\ z(1+o+2) u dAQ
g((D‘AQ’ dz ): otz N az = ©®

For w,q/vgq small,AQ is obtained from Eq(57) by succes-
sive approximation. T®(wpq/vy) We have

F((D)@
AQ=F(qn)—(@)ﬂexp(?)—dg (59
vg /N o/[1=xF(®)]

The derivation of the above approximation #hQ and the
explicit expression foF(®) are given in the Appendix.

On eliminatingV from Eg. (9) with the help of Eq(52),
the equation of motion for the dust fluid reduces to

dN_ 1

dd 60
dZ a4 - €0

N3

Poisson’s equatiofil0) is rewritten as

PHYSICAL REVIEW BE63 046406

z=2, ¢=0.5
v=0.5

1.0 I 1 1 1 1 1 I
V] 20 40 60 850 100 120 140 160

FIG. 4. Oscillatory nature of large amplitude shock wave gov-
erned by Eqgs(60), (61). N denotes the dust number density.

=wpdlvd.
()
oexp ——
g

+(5—1)N(—1+AQ)

dZCI)_ o
dZ 5

—exp(®)

. (61

Equating Eqs(60) and(61) with AQ given by Eq.(59) form

a closed system. Since the right hand side of E@8). and
(61) are free from explicit dependence it is permissible to
choose/=0 as the upstream point for purpose of numerical
integration and integrate up to large positive valueslof
Starting from a small perturbation of the boundary condi-
tions (50) and upon numerical integration of the above sys-
tem of equations by Runge-Kutta-Fehlberg method of order
5, it is seen that the perturbation develops into a shock wave
provided the dust velocity/y, far upstream exceeds the
phase velocityn of the wave. Prototype of the dust shock
wave structure is shown in Fig. 4. The transition from the far
upstream value to the far downstream value may occur with
an oscillating behavior.

Investigation based on numerical integration of E&GS)
and(61) keepingd and ¢ fixed but varyingu reveals certain
feature of the shock propagation. It is seen that shock wave is
generated only fou=V4,—\ lying between two extreme
values

0<Upin( 8,0) SUS Uy 6,0). (62
The dependence afy,;, and up,, on &, for different o, was
calculated numerically and is demonstrated graphically in
Fig. 5.

For adiabatic dust charge variatiom{4/v4=0) exis-
tence of dust acoustic solitary waves becomes possible pro-
vided the pseudopotential satisfies certain conditj@ds25.
Such conditions lead to imposition of bounds on the solitary
wave velocity and hence on the wave Mach number. The
dust density tends to become infinite as the limiting values of
the Mach number is approached. The dust derisigssoci-
ated with dust acoustic shocks, governed by E6) and
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e L I A B B variation of dust charge causes dissipation represented by the
term w(?*®M/5£?) in the KAV Burger equatior{32) de-
scribing small amplitude dust acoustic shock. It is a colli-
sionless shock in the sense that no viscous or damping ef-
fects resulting from collisions between dust and plasma
particles are involved. It is a new physical mechanism en-
tirely different from that involved in generating the shock
described by KdV Burger equation for DIA shock wdvd].
The dissipation coefficieniu is proportional to wpq/vy
= 7e.n/ 74 Vanishes in the adiabatic limit, i.e., hydrodynamic
time scalery> 7, charging time.

(b) Steady large amplitude shock wave propagation is de-
scribed by coupled equatiof®0) and(61) for dust densityN
and electrostatic potentidt. The effect of nonadiabaticity of

8 10 15 20 25 30 35 40 45 50 55 dust charge variation is represented by the term proportional
2 to wpq/vq in Eq. (59).
FIG. 5. Variation ofu,,, anduy,, with (o, 8). Large amplitude (c) The structure of steady small amplitude shocks given
shock wave generation occurs only figgin<U=Vg—A<Upay. by Eq. (45 are shown in Figs. 1, 2. The transition from

upstream to far downstream state changes from being of os-

(61) shows a similar behavior. But,, Or Uy, cannot be Ccillatory to monotonic nature as dissipatipnincreases.
determined from the analytical conditions on pseudopotential (d) Figure 3 shows oscillatory transition of dust dengity

as in case of solitary waves simply because no pseupotentifPm upstream normalized unperturbed valQenity) to

can exist when nonadiabaticity of dust charge variation idligher value far downstream for a large amplitude shock.
taken into account. The limits,,;, and u,,, are determined (e) Numerical investigation of Eq¢60) and (61) shows

by varyingu and integrating Eqg(60) and (61) numerically ~ that large amplitude shocks can occur only for upstream dust
until [N|—o. The graphical behavior shown in Fig. 5 gives drift velocity Vq=\+u lying between two extreme limits
the limiting values approximately. Figure 6 shows the correX +Umin @nd A + Upg With corresponding Mach numbe

sponding bounds of the Mach numbdrdefined by satisfying M in<M<Mpo [Egs. (62)—(64)]. The critical
Mach numberaM ., and M .o are functions ofé=n;y/ngg

_ Vg and o=T,/T.. The dependence af.n, Umax and M in,
TN (63) M ax are plotted in Fig. 5 and Fig. 6, respectively. The dust
densityN shows rapid increase withl and dust condensa-
Umin Umax tions becomes very intense 86— M ., (in the numerical

Mmin=1+ ==, Mma=1+——. (64 integrationN—o as M— M 4. According to the current
theory [18] such dust acoustic shock induced intense dust
condensation in interstellar dust cloud may suffice to initiate
gravitional contraction leading to star formation.
Discussions involving a summary of the results is pre- (f) Figure 3 shows the plot of the energy(with suitable

sented in this sectior(@) It is shown that the nonadiabatic hormalization to which the negatively charged dust grains
are raised by the negative potential of the passing electro-

B I e i e static shock.

(g) Approximate analytic solution of the KdV Burger
equation shows that an initial solitary wave structure decays
algebraically as shown by Eg&tl) and (42). The decay is
associated with development of a noise tail in consequence
of soliton mass conservatidizg. (39)].

VI. DISCUSSION

2.8

g
>

Mach Number

APPENDIX

Let AQ be approximately given by

dd
N A AQ=F(<I))+wV—TG(CI>,d—§) (A1)

5 10 15 20 26 30 35 40 45 50 55
8

FIG. 6. Variation ofM ,, @and M i, with (o, 8). Large ampli- o
tude shock wave generated by E¢80), (61) only for M;»<M  for small w,q/v4. Substituting in Eq(51) and Taylor ex-
<M pmax- panding toO(wpq/vy)
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wpg 9 4P
f[0,4Q=F(®)]+ 22T ol e, 5
AQ=F(®)
+?g(q>,F(q>),g)
d
=0. (A2)

Equating to zero terms independent af,q/vy and
O(wpd/vd),

f(P,AQ)=0, (A3)
G(CD dﬁ)——ﬁ—f - (CDFQJ dﬁ)
) dg - &AQ AQ:F((D) g ’ ( )1 d§ .
(A4)

By taking logarithm, transform equatid@3) to the follow-
ing form:

(D) G 20Q=In(1-pAQ): p— A5
and expand the solution in a power seriestof
AQ=F(d)=, ad. (A6)
k

Substituting the power series in Eg\5) and equating coef-
ficients of different powers ob, thea,’s are obtained recur-
sively

~ (I+o)(ot2)

7 ze(l+o+z)’

.
2 2ptz)
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ay

a1a2+ P E

2

SR prea)

2

S pxea)

a2 4
2 2 2“1
a,az+ 7 +paja,+p T} ,

2

P 2 2
ar=— ——| a,agta,aztp(ajaz;+aa
5 (p+2) 194 »aztp(ajas 12)

a3
2,3 3
+pajatp ?

a2

3
—+
>t

a2

2
2aja,a3+aja,+ 3

2

a 6
1
ada;+ 3a§7

a
+ psazllaz-i- p4? . (A7)

+p2

It is found that Eqs(A6) and (A7) give F(®).

For the range of values @b in the present calculation, it
is sufficient to evaluate the series in H#\6) to terms of
degree six inb giving F(®P) to error<0.01 when compared
to the exact value oAQ given by f(®P,AQ)=0.

Differentiatingf () with respect taAQ, using Eq.(A3),
G(®,dd/d¢) given by Eq.(A4) simplifies to

( d(I))_ u p((l)) F(®) ddb
Gl g = NP o I xF(@)] d

after some algebra, Eg&l) and(8) now give the expression
(59).
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